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ABSTRACT 

This paper considers canonical forms for the similarity action of Gl(n) on 
B ~,,=((A,B)EQ:“‘“xQ:“~*): 

Gl(n)x&,, +L,m, 

(H,(A,B))H(HAH-l,HB) 
(*> 

Those canonical forms are obtained as an application of a more general method to 
select canonical elements M, in the orbits 0, of a matrix group G acting on a set of 
matrices 3TL c C”P. We define a total order ( < ) on C”P, different from the 

lexicographic order : [0 4, x e x < 0, but 0 + x 0 x z 0 for x E W] and consider 

normalized 0,-elements with a minimal number of parameters: 

min { &f E 8, : &f normalized} 
< 

It is shown that the row and column echelon forms, the Jordan canonical form, and 
“ nice” control canonical forms for reachable (A, B)-pairs have a homogeneous 
interpretation as such ( < )-minimal orbit elements. Moreover new canonical forms for 
the general action ( < ) are determined via this method. 

1. INTRODUCTION 

Time-invariant linear systems in the state-space description, 

k(t) = Ax(t)+Bu(t) (1.1) 
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or 

x(k + 1) = Ax(k)+ Bu(k), 0.2) 

are usually identified with elements (A, B) of the affine spaces 

z: ‘=wI,nx%,m~ n,rn* (1.3) 

where 9lL, m denotes the space of all n X m matrices with entries in the 
complex field’ C, n and m are in IV. Pairs (A, B) belonging to the same orbit 

s , cA Bj of the natural Gl( n)-action 

are called similar. 

A canonical form on Z,,, is a map c: IX,,,, + Z,,, with the properties 

07 B) E S(A,B)’ (1.5) 

c(A,B)=c(~,& - S,,,,,=S,,-j,. (1.6) 

These canonical forms are investigated in the following special cases: 

(i) k(t) = Ax( t ), B = 0. For completely uncontrollable (free) systems 
(1.4) reduces to the similarity action on square matrices 

Glbb-n,n + +%,n, 
(1.7) 

(H,A)+HAH-l. 

The orbits S, are parametrized by the Jordan canonical form. 

‘Throughout this paper we restrict ourselves to the field C of complex numbers. The main 
reason is to avoid the real Jordan canonical form in later sections. The paper can be easily 

extended to R or to ordered fields. 
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(ii) jr(t) = Bu(t), A = 0. For integrators (1.4) coincides with row opera- 
tions 

GlbW’k,, --j =,,m, 
(H, B) * HB. 

(1.8) 

The orbits (At, contain canonical row echelon matrices (see Section 2). 
(iii) jr(t)= Ax(t)+ Bu(t) with rank[B AB . . . Anp’B] = n. Various 

canonical forms have been proposed in the literature (e.g. Popov [lo], Mayne 
[9], Weiner-t and Anton [14], Denham [3], Rissanen [12]) for the similarity 
action on the space of reachable (A, B)-pairs: 

zy_: = ((A,B)EZn,m:rank[B AB ... A”-‘B] =n}. (1.9) 

In particular it was observed that most of the so-called standard or canonical 
forms presented in earlier publications (Brunovsky [ 11, Luenberger [8], 
Rosenbrock [13]) do not satisfy the requirements of the above definition (cf. 
[lo, 31). Hazewinkel and Kalman [5] showed that there does not exist a 
continuous global canonical form for Zk, m. This result also destroys any hope 
of finding those canonical forms for Z,,, itself. However, this should not 
prejudice the investigation of global canonical forms for E,,,. As the Jordan 
canonical form for single matrices ihustrates, global canonical forms may be 
very useful without being continuous. 

So far as we know, there is only one paper treating the nonreachable case. 
Byrnes and Gauger [2] do so for scalar systems (m = 1) a canonical form 
(lA,‘b) with ‘A in Jordan canonical form and ‘b E (0, l>“. However, their 
result contains an error with respect to the number of l-entries in ‘b (see 
Section 5). Moreover, there is no obvious way to generalize their approach to 
multivariable systems (m > 1). In this paper we establish such a generaliza- 
tion as an application of a more general method to derive canonical forms for 
matrix orbits. 

Let G x % + 9X, be any action of a group 9 of matrices on a set a317, of 
n x m matrices. A general principle for singling out canonical elements M, in 
the orbits 8,, M E 9IL, of such an action is to reduce the number of 
parameters of the orbit elements as much as possible. This can be achieved 
systematically by applying the following total order ( + ): Let X, y E IWk, 
k E N. Define the leading index and the leading coordinate of x by 

Z(x): = ( max{ i; xi f 0} if x*0, 
o 

if x=0, 

if x f 0, 
xl: = 

i 
xl(x) 
1 if x=0. 

(1.10) 

(1.11) 
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The order ( -C ) is defined as follows: 

x,(~-~) = 0 or 
X<Y :” 

Xl(XPIJ) * 0 * Xl(x-y) < %(x-y). 
(1.12) 

EXAMPLE 1.1. 

because xlCx_y) = x3 = 0, 

( < ) coincides with the lexicographic order ( i ) on RN if we modify the 

usual order on R by 

and 

x-Cy e x<y for x,YER\(O), 

i.e., define 0 to be the smallest real number. 
Identifying a + bi E C with 

we can apply the order ( -C ) also to C k, k E N. In order to apply ( < ) to 
n x m matrices A we have to identify the matrices in some way with 
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nm-column vectors. Among all possibilities we select the following column- 

wise and rowwise procedures: 2 

A-CA 

A+A 

I 

am 

* 

a1 

i (a, 

1 

\ 

\ 

_ 

I 

“rn a 

“1 a 

‘( 

\ ( 

11.13) 

(1.14) 

respectively. 
The simplest idea to obtain canonical elements for the above mentioned 

matrix orbits 0, is to consider 

min{l);lE S,}. 
< 
C 

But in general those elements do not exist. However, normalizing a sufficient 
number of parameters for the 8, elements we in general obtain uniquely 

determined ( -C )-minimal orbit elements. 
To determine those elements we can proceed in most cases in two steps. 

Apply first the screen jimction 

W:Ck + {o,l}k, w(x)i: = 
0 if xi=O, 

1 if xi*0 
(1.16) 

to the orbit 8,, and determine the minimum 

w*=min{o(it2):tiiEO,}. 
< 
C 

Because ( -C ) is a total order and (0, l}k is finite, this minimum exists. The 

‘Throughout this paper matrices are denoted by capital letters. mj denotes the jth column, 

mi the i th row, and ml: the (i, j)th entry of the matrix M. 
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associated subset Q : = (h% E 0 M: o( tik) = w*} contains in general many ele- 
ments, but from the particular group action it is often clear how canonical 
elements in D can be maintained by normalizing certain entries of the 
&?-elements. 

Proceeding in this way, we derive in Sections 2, 3, and 4 ( < )-character+ 
zations of the echelon forms, the nice control canonical forms for XL,,,, and 
the Jordan canonical form. In Section 5 we drop the reachability assumption 
and derive Jordan canonical pairs (‘A,‘B) for X,,,/Gl(n). The ‘B-matrices 
are obtained as normalized ( + )-minimal elements of the orbits $(*, Rj of the 
action Stab(‘A)x &%,,,, + L%,, m, (H, B) H HB. Finally in Section 6 we 
combine the nice control canonical forms with the Jordan canonical form and 
obtain composite canonical orbit elements of the form 

where (A,, B,) is a nice control canonical form for the reachable subsystem of 
(A, B), A, is in Jordan canonical form, and A, is somehow canonically fixed 
with a few parameters. 

It should be mentioned that the emphasis of this paper lies on the unifying 
concept of the order ( < ), i.e., to demonstrate that apparently different 
canonical forms can be given a homogeneous interpretation as normalized 
( < )-minimal elements. However, besides interpretations of known canonical 
forms in terms of ( + ), also new canonical forms for the general Gl(n)-action 

on Tl,m are derived with the help of ( + ). 

2. ECHELON FORMS 

Let A E %, n2, rank A = r. Row operations A ++ LA and combinations 
with column operations A +-+ LAR can be interpreted as group actions 

G x %,,,, + =,,,, (2.1) 

where G stands for Gl(m) or Gl(m) XGl( n). It is well known that the 
associated orbits %‘A and ebxA contain canonical echelon matrices RA and 
“A of the form 

RA = [A(q), A(d...,A(q)] (2.2) 
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with 

0. 

443 

and 

_I r-i+l, 

0 . . . 0 0 0 ... 0 

A(,,)= ; ! ! ! : 
. . . 0 0 0 ... 0 

* . . . * 1 0 ... 0 

q: = Yi - Yi-19 

yo: = 0, 

(24 

(2.4) 

where 

rank[a’,...,aY*] =i, (2.5) 

rank[a’,...,aYi+l] =i+l for i=O,...,r-1; (2.6) 

and 

CRA= 0 r,m--T 1 I . 1 
---- -l___--- 

0 _ n-r,m-r I 0 
n--T,* 

(2.7) 

The ( -C tinterpretation of these forms is as follows: 
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PROPOSITION 2.1.1. 

RA=min A~C%~:((i~)~=lf~+i~_n}, 
J (2.8) 

CRA=min{A~C?%t,:(cii)I=lfori~_m}. 
< 
C 

(2.9) 

Proof The echelon forms RA and cRA fulfill the normalizability condi- 

tions (%z~)~ = 1, (CRai)l = (CAai)l = 1. The uniqueness of the echelon forms 
implies that any normalized A with A + RA has at least one O-entry in a 

position where RA has a leading 1 and’the same fixed @block above the 
associated row. But then the rank conditions (2.4)-(2.6) applied to A would 
generate a family (6,, . . . ,6,) different from (a,, . . . ,a,). But (a,, . . . ,a,) is an 
orbit invariant; hence such an A cannot exist. Equation (2.9) is proved 

completely analogously. n 

LetrECkand 

s(r): = 1 min{i, xi f 0) if x*0, 

0 if x=0, 
(2.10) 

(2.11) 

Exchanging 2 and 7 and replacing (x)~ by (x), in (2.8) and (2.9), the 

resulting minimal elements 

RA=min{AiE%t,:(cii)s=l for iEn}, 
< 
C 

(2.12) 

cRA=min{A~C.?%,,,:(rii),=l for iEm} 
< 7 

(2.13) 

again exist and are uniquely determined. The explicit characterizations of 
these second echelon forms are 

RA = [A@,), A(~,),...>A(&.)] (2.14) 
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with8,=qfori=l,...,rand 

oi 

and 

A(&,) = 

0 

0 
1 

0 

6 

O 

0 
A@,)= . I- 6 

cd= 

* . . . * 

* . . . * 

* . . . * 

0 . . . 0 

;, . . . ;, 

. . . 0 1 

. . . 0 0 
. . 
. . 

i 6 

Ii 
* 
0 

6 

for 

. . 

. . 

0 n--*,r ’ 0 
------ I_ “-:,“_-1 
1 I 

; %I-r 

1 I 

i > 1, 

* 

0 :I 0 

445 

(2.15) 

3. CONTROL CANONICAL FORMS FOR REACHABLE (A, @PAIRS 

In order to obtain canonical forms for the similarity orbits of (A, B)-pairs, 
we have to consider the actions 

A*HAH-’ and B-HB 

simultaneously. Replacing the pairs (A, B) E Zi,,, by the reachability matrix 

%(A,B):=[B ... An-‘B], (3.1) 

we can avoid this difficulty in the reachable case. 
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The similarity action induces row operations on %( A, B): 

%(HAH-‘, HB) = H%(A, B) v’H~Gl(n), (3.2) 

and because rank a( A, B) = n, we can construct basis matrices of C”, 
selecting certain independent columns of %(A, B) such that the associated 
representations of A and B define canonical elements in the orbits SCA e). Let 
m,nEN,m,n>l,m={l,..., m},andfi={O,l,..., n}.Asubsetacn’xmis - 
called nice if 

(i,j)Eu * (i-l,j)Eaori=O foralli, j. (3.3) 

A nice subset with precisely n elements is called a nice selection. Let 
a(A, B) denote the matrix obtained from ?%(A, B) by removing all columns 
A’bj whose index (i, j) is not in u. For reachable pairs (A, B) belonging to the 
subset 

w: ={(A,B)~Z~,,,:ranku(A,B)=n), (3.4) 

one particular well-defined element in the orbit S,, s) is obtained by the 
assignment 

(A,B)-,(A(u),B(u)):=(u(A,B)-‘Au(A,B),u(A,B)-’B). 

(3.5) 

However, this way a particular nice selection u covers only the subset 
WC z; m, and additional procedures generating all nice selections covering 
the complete space XL,, are required (see M. Hazewinkel [4] and M. 
Hazewinkel and II. E. Kalman [5] for details). 

In [7] a procedure is described which assigns to every pair (A, B) a 
unique nice selection u generated from a nice order of AX m. 

DEFINITION 3.1. A relation of total order c on _n x _m is called nice if 

i<k =) (i, j)C (k, j) for jEm, (3.6) 

(k,I)L(i,j) * ((k+I),I)c(i+I,j) for k,i<n. (3.7) 

A nice order c can be represented graphically by a nice path through an 
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(n + 1) X m array of points as follows. 

(1) Nice: 

(2) Not nice: 

* + 

(3) (Left) Hermite path: 

* 

J 
* 

1 
* 1 

(4) (Left) Kronecker path: 

* c 

& 

Tt*t*t* * c * c * t * 

With every nice order E and pair (A, B) E 8:. m is associated the following 
modified Rosenbrock deletion procedure: Delete, in the family (A”@),,, jj E nXn 
ordered by E, every vector A’bj which is linearly dependent upon its 
predecessors. By (3.6) and the Cayley-Hamilton theorem all vectors A”bj, 
j E 1~1, are deleted. By (3.7) the deletion of A”bj implies the deletion of Ai+kbj 

for k 2 0. Therefore the result of the deletion procedure is a nice selection 
u c tiX _m with the property rank a( A, B) = n. 
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We describe the canonical forms (3.5) associated to these nice orders in 
terms of the ( + )-order. For this let 9,s = [w’ . . . w”+~] be the n X (n + 
m) matrix whose columns wk are the vectors A’bj, j E m and i E C? ordered 
according to L. Further let fiAB = [Cl . . . 3’1 be formed by those columns 
A”bj of Q2,, for which i > 1. For example, if 

then 

a2,, = [b’ Ab’ b2 Ab2 b3 Ab3 A2 b3] 

fi,, = [ Ab’ Ab2 Ab3 A2b3]. 

Define the (n + m)-permutation matrix II(a) by 

+)L eJ 
i 

if wi = bj, 

e’,+* if wi=gl. (3-B) 

PROPOSITION 3.2. For every nice order ( C ) on AX _m and every pair 
(A, B) E EL, we have 

(B(o),A(a))~(cr)=m_in{M~%e,,:(mj)s=lfbrjE~}. (3.9) 

Proof. (A(a), B(a)) and (A, B) are similar; hence there exists some 
H E Gl(n) such that ‘%(A(a), B(u)) = %(A, B). Applying c to 
‘%(A(u), B(u)) and $(A, B), we obtain matrices !C12,, and fJ2A(o)BCoI, respec- 
tively, formed by the columns of %(A, B) and %(A(u), B(u)) with the same 
column indices. Hence Q2ACo,)BCo,) = Hat,,. But the columns A(u)“b(u)j, 

i < ‘j, Of ‘A(o)B(o) are C” unit vectors, and the columns A(a)“ib(a)j are 
linearly dependent of their predecessors in StACo)sCo). This implies [in view of 
the conditions (2.12) and (2.13)] that Q2ACo)BCoJ is already in second echelon 
form. But by construction of II(u) we have SZACo)sCo) = (B(u), A(u))II(u). 
From the uniqueness of the echelon forms and the characterization (2.12) we 
finally deduce the formula (3.9). n 

EXAMPLE 3.3. Let 

13 o-1 0 1 0 2 
05 l-4 0 0 0 1 

A= 1 0 -1 -1 -f and B= 4 0 4 . 
01 o-1 0 1 0 0 

-2 0 0 0 o_ -0 1 2_ 
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The deletion procedure associated to the Hermite order 

b’ 

1 

Ab’ 

1 

A2b’ 
L 

A3b’ 
1 

A4b’ 
1 

A5b’ 

b2 

1 

Ab2 

L 

A2b2 

L 

A3b2 

L 

A4b2 

1 

A5b2 - 

> b3 

J 

Ab3 

J 

A2b3 

1 

A3b3 

L 

A4b3 

L 

A5b3 

generates the Hermite list ( ul, 02, u3) = (2,3,0) and the basis matrix 

a(A> B)= [b’ Ab’ b2 Ab2 A2b2] 

1 0 0 

0 0 0 

= 4 -4 0 

0 -1 0 
-1 2 1 

0 0 
0 -+ 

-; B 
0 0 
0 0 

The canonical form is given by 

A(a)=a(A,B)-‘Aa(A,B)= 

B(a)=a(A,B)-‘B= 

‘1 0 
0 0 
0 1 
0 0 

.o 0 
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From 

6! AB = b’ Ab’ [ A’b’ b” Ab2 A2b2 A3b2 b’] 

= 

-1 010 0 o-i!2 

0 000 0-i -2 1 

4 -4 4 0 -+ 1 -; 2 4 

1 -110 0 0 -& 0 

0 201 0 0 02 

we obtain 

and it is easily checked that 

101000-$ 2 

010000-1 2 
(%+A(4)~(4 = 0 0 0 1 0 0 2 - 2 

000010 1 6 

_OOOOOl 4-2 

coincides with the second row echelon form of Q,,. 

4. THE JORDAN CANONICAL FORM 

Let A E 9R,, n, and let (s - hi)“,,, where 

((+1(A): ={(i,j) E_nXp;iE! A jE ti}, 

be the elementary divisors of A ordered according to 

A, < A, < ‘. . < A,, 

nil >, ni2 > . 2 nit 

(4.1) 

(4.2) 

(4.3) 

I((x, m) denotes the m X m Jordan block with h’s on the diagonal, l’s on the 
superdiagonal, and O’s elsewhere, and 

‘A= & &(h,,n,j) 
i-1 j-1 

(4.4) 

is the Jordan canonical form of A. 



CANONICAL FORMS FOR LINEAR SYSTEMS 451 

To interpret ‘A as a certain normalized minimal element of the orbit 5, of 

the similarity action 

Gl(nW’L,. + ‘%x,,, 
(4.5) 

(H, A) * HAH-‘, 

we adapt -‘A to the order ( < ). For this we permute the columns and rows of 
‘A so that the resulting matrix J,(A) has the property 

J,(A) = min { P’APT: P an n X n permutation matrix}. (4.6) 
< 
C 

EXAMPLE 4.1. 

x, 1 0; 
I I 
I I 

0 x, II 0 I 0 IO 

0 0 A,) 
I I 
I I __----_----- ------- 

= 0 
pl 1; 

I 

I 0 A,1 
0 ’ 0 , 

I 
__-___ ~____~_----_I__ 

I 
0 

IA, II 
I 0 

I 0 x2; 
0 

I __----_------____-- 
0 I 0 ’ 0 ‘A,_ 

J,(A) = 

A, 0 1 0 0; 

0 h, 0 1 01 

0 0 A, 0 1 ! 05x.3 
0 0 0 x, 01 

0 0 0 0 h,) 
__--------- -r------- 

,A, 0 1 

0 3x5 
’ 0 A, 0 

; 0 0 A, , 
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We need the following notation: For x E R let 

p(x): = 1 max{i: Xi f 0 A i < l(X)}, 

0 if xi=0 fori<l(x), (4.7) 

i 

xpcx) if P(x) * 0, 
xp: = 

1 if p(x)=O. 

For matrices A E M,, let 

y(A) : = min{t: a’ * 0}, 

l(A): =max{j:clJ(“)*O}, 

l(A): = (S@),Y@)), 

(A),: = a$;]. 

THEOREM 4.2. 

(4.8) 

w-9 
(4.10) 

(4.11) 

(4.12) 

J,(A)=min{A~E~:(ci’),=lforiE_n}. 
< 

Proof. 

J,(A)~%~:={A~S~:(6~)~=1foriE_n} 

because $ E (0, 1) for k * p. Minimal elements with respect to total orders are 
unique; hence it suffices to show 

A k J,(A) VAE %A. (4.13) 
c 

Assume that there exist elements A E %x, with A + J,(A). Choose A = 
c 

HJ,( A)H- ’ E 9ZL, with 
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Consider the columns aY, $, and assume: 

CaseZ: ayY<jyy=:X. The ordering X, < A, < . * * < A, of the eigenval- 
ues of A in J,(A) implies 

Ker(J,(A)-riY,Z,)“C [el,...,ey-l]c. (4.15) 

From d = ji for i = l,..., y - 1 and (4.15) we conclude 

(A- BY,)eY E [el,...,eyP1lc 

and 

Ker (A- kY!Z,)” 3 Ker (.Z,( A) - $yZ,)n, 

But 

dim,Ker(A-aY,Z,)“=dimc(Zc(A)-qZ,)” 

then implies 

Ker(J,(A)-aY,Z,)“=Ker(A--GY,I,)“, 

and hence there exists a vector z E [e’, . . . , ey- ‘1 c such that 

(A-q)(eY+z)EKer(A-a7,)“, 

and from 

we obtain the contradiction ey E [el,...,eyP1lc. 
Case ZZ: zy = j,’ = : A Then the column jy necessarily contains an off- 

diagonal l-entry j,Y, q < y, and we have 

Ker(.Z,(A)-XZ,)c [el,...,ey-l]c, (4.16) 
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similarly to case I. The equality d’ = ji for i = 1,. . . , y - 1 now implies 

Ker(J,(A)-XZ,)=Ker(A-XI,). (4.17) 

With (4.16) and (4.17) it is clear that LP necessarily has nonzero entries G:, 
j* y. Let 

p -- 1 
AeY= AeY + ep + C qej, 

j= 1 

(4.18) 

and assume that p < q and p is small enough that ep intersects a Jordan block 

J($)withaneigenvalue~<<.Then(A-XZ,)]:[e’,...,eP]c 4 [e’,...,ep], 

is a linear bijection, and hence there exists a vector z E [ el,. . . , ep] c such that 

p-1 

(A- hZ,)z = ep + C Sjej. 
j=l 

With (4.18) we obtain 

(A-hZ,)(eY-z)=O, 

contradicting Ker(A- AZ,)C [el,...,eyP1]c. 

If finally ep intersects the same Jordan block J(h) as ey, we have to 
distinguish the following cases: 

(a) the row & contains an off-diagonal l-entry, 
(b) &=(O ,..., O,$‘=X,O ,..., 0)r. 

In cu.se (a) there exists a unit vector er such that (A- AZ,)e’= ep. 
Replacing e y by 9 = fi( e Y - e ’ ) with 

l 
1 if cZy=O forj=l,...,p-1, 

p= 1 
E if 6: =max(jE p-l :aZtO}exists, 

we obtain 

sP1 I 
A#=h?+ees+ C aye] with hp. 

j=l 1 
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With 

fi: = [ei )...) eY-i,&y,eY+r)...) en] 

we obtain a new matrix A : = fi&k ’ E %‘A with the properties 

A < J,(A), Y(& = Y(a), +i)=6<{(A)=p, 
c 

contradicting (4.14). 
For case (b) let j,, be the first row in J,(A) following & with an 

off-diagonal l-entry $. Exchanging er and ey in I,, we obtain a new matrix 
Z, E Gl( n) and I,, AZ, ’ -X I,( A) with y( Zn AZ, ‘) = r < y(A) = y, contradicting 
again the minimality property (4.14) of A. W 

REMARK 4.3. For I,.( A) = I,( A)T = min < { P’APr} : P an n x n permuta- 
r 

tion matrix}, we analogously obtain the interpretation as normalized row 
minimal s*-element: 

J,(A)=min{AiEcS,:(cii),=lfori~_n} 
< 

(4.19) 

In both cases J,(A) and J,.(A), the somewhat artificial normalizability condi- 
tions ((ii)P = 1 and ((ii)P = 1, respectively, are a consequence of the fact that 
the simultaneous column and row scalings 

1 
h 11 

0 

0 

1 
h nn 

leave the diagonal entries of A invariant. 
minimal-parameter orbit elements we have 
parameters. 

Hence in order to single out 
to normalize free off-diagonal 

5. JORDAN CANONICAL FORMS FOR LINEAR SYSTEMS 

A direct way to extend the canonical forms for single matrices to the 
similarity action on pairs (A, B) E Z,, m is to proceed as follows: Bring A into 
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Jordan canonical form. Consider the action 

Stab(‘A)xUX,,,, + 9R,,, 

(S,B)-SB 

of the Jordan stabilizer group 

Stab(‘A)={HEGl(n):H’AH-‘=‘A). 

Apply the order ( 4 ) to the orbits &(A,Bj of this action and derive a Jordan 
row echelon form. 

In an early paper Heymann [6] applied this idea to controllable systems 
He derived an algorithm for the construction of Jordan canonical pairs 
(‘A,‘B). However, his paper does not contain an explicit characterization of 
these canonical pairs. 

Byrnes and Gauger (2) applied the same idea to scalar systems (A, b) E 
I: n,l and obtained canonical pairs (‘A,Jb) with ‘b E (0, l}“. But their result 
requires a modification with respect to the number of l-entries in ‘b. We 
describe this modification in Lemma 5.2. In Theorem 5.1 the existence of a 
minimal-parameter Jordan row echelon form is established for Z,, m, n and m 
arbitrary. Moreover, in special cases the resulting Jordan row echelon form 
can be characterized solely in terms of the canonical matrices ‘B themselves. 

Remember the notation I(B) = (l(B), y(B)) and (B), = by:(ij for the lead- 
ing index and the leading entry of a matrix B E b9R, ,,, . Let further B( i, j) and 
B( i ) denote the submatrices of B corresponding to the Jordan blocks J( A i, n, j) 
and J(Ai)= $;:iJ(Xi,nij) f J d o a or an canonical form ‘A in the pair (‘A, B). 

THEOREM 5.1. For a given pair (A, B) E Z,, m there exists exactly one 
pair (‘A, ‘B) E SCA, Bj such that ‘A is of Jordan canonical form and: 

(a) ‘B is normalized, i.e., 

(‘B(i, j)), = 1 V(i,j)EI(‘A); (54 

(b) we have 

‘B 6 fi (5.2) C 

for all (A, B)E CScA,nj with A in Jordan canonical form and B normalized. 
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Proof Consider an element fi in &(*,s) with 

o(B)= min{o(Z?): fiE$(A,Bj}. 
< 
c 
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(5.3) 

Define an associated matrix Q E Gl( n) by 

Qij: = diag(qij, qij ,..., qij) E CnX”e~, 

9ij: = 
i 

(B(i,j)), if (~,~)EZ(A,B), 

1 if (i,j)PZ(A,B). 

We obtain ((Q-‘B)(i,j)), = 1 for all (i,j)~ Z(A, B) and Q-“AQ =-‘A. It 
remains to show that ‘B: = Q-‘B s h for all Z? E &(A,Bj for which the 

property (5.1) holds. Assume that therCk exists a matrix S E Stab(‘A) such that 
8 = S’B fulfills (5.1) but h < ‘B. In order to show that this is not possible we 

consider the elements S E SFab(‘A): Every S is of the form S = diag(S,, . . . , S,), 

where the S4 E Stab(.Z(hi)) can be described by its t: subblocks. The (k, Z)th .,, 
subblock S,(k, 2) of Si is nik X nil and of the form 

0 . 

0 * 

0 . 

WI 

0 

0 

w2 wg . . . W 
“il 

w, w2 * . ’ W n,,-1 

. . 
. . . 

W2 

Wl 

0 

. . . . . 0 

0 Wl W2 W3 . 

. . 0 w1 W2 . 

. . . . . 

if nik > nil, 

W 
“ik 

W+-1 

. . 

W2 

0 Wl 

(5.4) 

if nik < nil, (5.5) 
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where the ZL;~‘s belong to C and can vary freely from block to block under the 
restriction that S has to be invertible. 

Now let Z(S’B -‘B) = ({, y), and let Ih$ belong to the submatrix ‘B(k, I), 

(k, I) E I(‘A, B). Replace S,(E, Z) in S by $(I, Z) = S,(Z, Z) - Z_,. If the new 
matrix !? is again in Cl(n), then we have automatically SE Stab(‘A) and 
sJB = S’B - B, where 

if (i,j>*(k, I>, 
if (i,j)=(k,Z). 

This implies w( sJB) 2 w( ‘B) = o( l?), contradicting (5.3). If on the other hand 

34 Gl(n), then we define 

and replace S,( 1, j), j= 1,. . . , t,, in S by 

* 1 Cl+ YML j> 
sJC=(zJ)= (l+y)S,(Z,Z)-Ink, 

if j*Z 

if j= 1. 

Then we have SE Stab(‘A) and 

(S’B)(i, j) = 
i 

B(i,j) if (i,j)*(k,Z), 

B(i,j) if (i,j)=(k,Z), 

where&k,Z)j=Jb(k,Z)Jif j=l,...,t-land 

h(k, z)y = z(k, I),? 
i 

if i = I,...,{- 1, 
if i={. 

Hence again o( S’B) ; w( ‘B) = w( L?), contradicting (5.3). Summarizing, we 

have shown that S’B F ‘B for all S E Stab(‘A) for which S’B fulfills (5.1). n 

For the explicit characterization of Jordan canonicaZ pairs (‘A, ‘B) we 
need some more notation. Let 

~(A)={(i,p~):iEs A jE Zi} 
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and 

be two index sets defined by 

where 

nil = ni2 = * . . = nij,_l > flih, 

nij, = 72.. 1],+1 =. . . = nij,-l 
’ nijz 

nij, = 12.. lll,+l = . . . = nit,. 

We further associate to every pair (A, b) E Z,,, the index lists ({,) and (p,), 

Y E I( A), defined by 

cij: = Z(b(i,j)) and pij: = nij-lij. 

LEMMA 5.2. A pair (A, b) is in JCF if and only if A is in JCF and the 

following conditions hold: 

(9 b(i, j) = On,,for (6 j) P P(A, b), 

io\ 

(ii) b(i, j)= ; + s,,for (6 j) E P(A, b), 

(iii) For (i, j),(i, k) E p(A, b) 

j<k 3 lij > cik and Pij ’ Pik 

(i.e., the numbers of zeros above 1 and below 1 both decrease if j increases). 
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Proof. Assume that (‘A, b) is in Jordan canonical form and consider a 

typical subcolumn 

b(i, pk) 
b(i,pk+l) 

*o 

of b. Without loss of generality we can assume b(i, pk) f 0. Let S = (S,, . . . , 

S,) E Stab(‘A) with 

(i) S, the identity matrix for v f i, 

(ii) S,(j,j)=I,,,for jut, and j*,uk, - 
10) 

0 

(iii) Si(pk, pk)b(i, pk) = 1 + E(b(i, pk))’ 
0 

\ ) 
(iv) Si(j,yk)b(i,pk)= -bl)i,j)forj=~,+l,...,~,+,-1, 
(v) Si( Y, j) = 0 elsewhere. 

Condition (iv) can be achieved because S,(j, pk) is square for j= pk -I- 1,. . . , 
pk+l - 1. We obtain 

(Sb)(i>PL,+j)=O 

for 

(0‘ 

j=l ,...,pk+l-pk-l and (Sb)(i,Pk)= y . 
0 

Finally, if (i,k)E/~(A,B)3(i,j), k>j, but Sij<cik or Pij<Pik, then there 
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exists a matrix Si(j, k) of the form (5.4) or (5.5) such that 

Thus we have shown that the conditions (i)-(iii) are necessary for (-‘A, b) to 
be in Jordan canonical form. 

Assume conversely that (i)-(m) hold for (-‘A, b). The normalizability 
condition (5.2) is fulfilled because every b(i, j) is either 0 or a Q=” unit vector. 
It remains to show that b s 6 for all be &(*, s) with (5.2). Consider any 

subcolumn (Sb)(i, pk), S E S?ab(IA). Because of condition (i) of Lemma 5.2, 

(Sb)(i,pk)= i Si(Pk,Pj)bCiyl-‘j). 
j=l 

Condition (iii) of Lemma 5.2 implies 

Hence Z(Sb(i, pk)) = Z(Si(pk, ,uk)b(ir pk)) = lik. But (Sb(i, pk)[ = 1; hence we 
obtain (Sb)(i, pk) h b(i, pk) for all (i, k) E p(A, b) or equivalently (Sb) k b, 

for all S E Stab(‘A)Cfor which Sb fulfills (5.2). Cm 

As an immediate consequence of Lemma 5.2 we obtain that the action 

Stab(‘A) X Gsrc,, i + Em,, i has finitely many orbits. Every orbit &(A,Bj is 
completely determined by the list of indices 

(5.6) 

The number of l-entries in the blocks b(i), i = 1,. . . ,s, is restricted by 
condition (iii) of Lemma 5.2. However, the following example shows that, 
opposite to the result of Bymes and Gauger, there exist canonical vectors ‘b 
with more than one nonzero lentry in the blocks b(i), i E s. 

EXAMPLE 5.3. Let (A, b) E Z,,, be in Jordan canonical form: 

‘A = J(hl,4)~J(xl,2)~J(X,,1), 

P(A)= ((I,I),(I,2)&3)). 



462 D. PRATZELWOLTERS 

(a) Assume p(A, b) = {(1,1),(1,2)}, i.e. b(l,l) * 0 * b(1,2). From condi- 
tion (iii) of Lemma 5.2, {rr > lr2 > [rr - 2. Hence the possible l-lists are 
(3,2,0) and (2, LO). The associated canonical b-vectors are 

(0010 01 0)’ and (0100 10 0)‘. 

(b) Assume p(A, b) = ((1,1),(1,3)}, i.e. b(l, 1) * 0 * b(1,3). From condi- 
tion (iii) of Lemma 5.2, {rr > {ra = 1 > {rr - 3. The possible l-lists are (3,0,1) 
and (2,0, l), and the associated canonical b-vectors are 

(0010 00 1)’ and (0100 00 1)‘. 

(c) Assume p(A, B)= {(1,2),(1,3)}, i.e. b(1,2)* b(l,3). From condition 
(iii) of Lemma 5.2, {r2 > {r3 = 1 > {r2 - 1. This is not possible, because 

(12 =G 2. 
(d) Assume p(A, b)=(A), i.e. b(1, j) * 0 for j= 1,2,3. From condition 

(iii) of Lemma 5.2, {r2 > 1 > {r2 - 1. This is again not possible, because 

512 G 2. 
(e) Assume I_~(A, b)= ((1, l)}, i.e. b(l, l)* 0. From condition (iii) of 

Lemma 5.2, {rr > 0. Hence the possible l-lists are (l,O, 0), (2,0,0), 
(3,0,0), (4,0,0), and the associated canonical b-vectors are 

(1000 00 o)‘, (0100 00 o)‘, 

(0010 00 o)‘, (0001 00 0)‘. 

Table 1 gives a complete description of the orbit space of the action 
Stab(‘A)x L%, 1 + uX, 1 h-5-i = J(~,,~)~J(X,,~)~J(X,, 1). 

We close this section with an extension of Lemma 5.2 to multivariable 
pairs (A, B) (m > 1) for which the Jordan canonical form ‘A is a Jordan block 

1(X, n). 
Let ,,C be the group of all n x n matrices S( wr, . . . , a,,) of the form 

w1 02 . . . w,, 

0 . . 
, . 

. . ,) cdl=/= 0. 

a2 

0 . . . . cd1 
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TABLE 1 
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CL (‘A,%) (0 ‘b 

0 (O,O, 0) (0000 00 oy 

l(L1>> (LO,O) (1000 00 oy 
(2>0,0) (0100 00 0)’ 
(3>0,0) (0010 00 O)T 

(4,&O) (0001 00 o)7 

G2)) (0, LO) (0000 10 oy 
(0, 2, 0) (0000 01 of 

((L3)) (O>O,l) (0000 00 1y 

((12 l),(W) (3,&O) (0010 01 oy- 
(2, LO) (0100 10 0)7 

((1>1)>(1>3)) (%O, 1) (0100 00 ly- 
(3>0,1) (0010 00 1)7 

Modifying the echelon forms of Section 2, we obtain canonical ,G row 

echelon matrices of the form 

0 . . . 0 * ... * 0 * ... * 0 * ... * 1 (j * 
. . ’ 0 . 0 . . * 

i 

. * . 0 . 
. . . . * . . . . 

f$L;;;~~~~,,;;; 

0 . . . 0 0 . . . 0 0 0 ‘.. 0 0 0 .” 0 * * 

for the orbits of the action 

. * 

. . * 

(5.7) 
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More precisely, we associate to B E C ” m two index lists (5) and (y) defined 

bY 

y,=min{iE_n:l(b’)>O} 

yj= min{i E_n: Z(H) > z(bj-l)}, Ii= Z(bvj) for j> 1, 

and obtain: 

LEMMA 5.4. Every orbit ,9, of the action (5.7) contains exactly one 

element *B of the form [*B(l),*B(2),...,*B(r)] with 

*B(i) = 

si - It-1 

0 * . 
. . 
. * 
. . 

0 . 
* . 
. . 
. . 
. * 
* * . 

0 0 . 
. . 
. . 
. . 

0 0 . 
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Proof. Without loss of generality we can assume b’ * 0. Then there 
exists a matrix S E ,,G such that 

Assume b’ ,. ..,bYq-’ is already in the form (5.8). Let S(w, ,..., wn) E,G with 
w,=1,0j=Oforj=2 ,..., {q_,,{,+1 ,..., nand{,_,+l,..., {,suchthat 

This is possible because bf, * 0. We obtain S( bj) = bj for j = 1,. . . , y, - 1 and 
(Sb7q)i = 0 for i = 1,. . . , lj - li_ I, Si + 1,. . . ,n. Hence b’, . . . , b”, fulfills (5.8). 

Uniqueness: Assume the orbit ,,9, contains two elements B and B= SB of 
the form (5.8). Then 671= S(h71) implies wr = 1 and ws = o3 = * * * = os, = 0, 
and hence @ = S(o) for j= yr,. . . ,yz - 1. But 6;: * 0 * bii together with 
6~=6~ for j=l,...,{s-ll implies ws,+r=*** =wsz=O and 6?=6j 

for j = 5s - Zr + 1,. . . , 12. Continuing this way, we obtain SB = & n 

The following corollary is immediate from the uniqueness part of the proof 
of Lemma 5.4. 

COROLLARY 5.5. A matrix S(w,, . . . , w,,) belongs to the stabilizer group of 
*Bifandonly~f’w,=1andwj=Oforj=2,...,5*,where5*=maxi,,Si. 

- 

Because Stab(J(A, n))=,,G for all A E C and n E N, and S*b 2 *b for all 

S E “G, we obtain that the pairs (J( X, n), *B) are Jordan canonical pairs in the 
sense of Theorem 5.1. 

EXAMPLE 5.6. The possible (LO, *) configurations for row echelon 
matrices *B E C 3 .3 are shown in Table 2. The @-entries denote nonvanishing 
parameters. 



466 D. PR;iTZELWOLTERS 

TABLE 2 

000 l** l*O 
0 0 0 0 0 0 oocr3 
0 0 0 0 0 0 0 0 0 

100 lo* o** 
oe3* oo* l** 
OOCB oe3* 0 0 0 

o** Ol* 0 1 0 
0 * * 0 0 0 0 0 0 
1 * * 0 0 0 0 0 0 

000 oo* 001 
Ol* OO* 0 0 0 
OOfB Ol* 0 0 0 

1 *o lo* 
000 ocB* 
ooed 0 0 0 

0 *o oo* 
l** I** 

OO@ ocd* 

010 oo* 
000 Ol* 
ooc3 0 0 0 

0 0 0 0 0 0 
001 0 0 0 
0 0 0 001 

4. JORDAN CONTROL CANONICAL FORMS FOR Z,, m 

Another possibility for generating canonical forms for the similarity action 
on arbitrary, not necessarily reachable, pairs (A, B) E Z,, m is to combine the 
procedure applied in the reachable case with the Jordan canonical form. For 
this a nice basis of the reachability subspace %: = span, [ B AB . . A”-‘B], 
dim ‘?k = : n,, is extended to a complete basis of the state space Cn such that 
in the associated Kalman decomposition of (A, B) 

(6.1) 

(A,, B,) is in control canonical form, A, in Jordan canonical form, and A, 
somehow canonically fixed with a few parameters. 

Let (A, B) E Z,,,, c be a nice order on fix TJ, and (I be the nice 
selection generated by c and (A, B). Let (A,(o), Bl(a)) be the u-canonical 
form for the pair (A,, B,) in the decomposition (4.1). 
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THEOREM 6.1. For evey pair (A, B) E Z,,, and nice order L there 
exists exactly one element (CA,cB) E SCA,ej with the following properties: 

(a) (cA,CB) is of the fm 

([ Aly ;:I,[ B$J)]); (6.2) 

(b) we have 

p(‘a”) = 1 for i=n,+l,...,n; (6.3) 

(c) we have 

(CA,CB) z (A, B) (64 

for all (-4 fi) E S,,, Bj of the form (6.2) with the property (6.3). 

Proof Let A-denote the induced C-linear map & C “/CR -+ C “/%, and 
let 

J,(A)= ; 2 J(Xi,fiij) 
i=l j=l 

be the Jordan canonical form of x Extending the nice u-basis of CR. by 
“cyclic” representatives (A - ~i)nij-vzij, v = 1,. . . ,fiii, of the classes (K- 
&)““-“[zij] of a C”/% J or an d b asis, we obtain a representation of the form 

(6.5) 

for A, where the-n, X fiij submatrices A,(&, fiij) of A, corresponding to the 
Jordan blocks J( Xi, fii j) are of the form 

(6.6) 
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The * ‘s denote the coordinates of (A - x)“ljzij E % with respect to the nice 
u-basis of 9,. Multiplying the generators zi j of the Jordan blocks J( >;‘i, iii j) with 
suitable constants fii j E C, we can normalize the leading coordinates in the 

( *)-columns of A,( xi, fii j). Hence the resulting columns of 
A2 

i i JA- 
fulfill the 

normalizability condition (6.3). 
Let now o* denote the set of all A E C n Xn for which there exists a 

BE Cnxm such that (A, I?) E S,, Bj, A is of the form (69, and A, is of the 
form (6.6) with the leading coordinates in the (*)-columns normalized to 1. 
Define 

~*=m${w(A,):At0~}. (6.7) 

w* exists and is uniquely determined. Let AE GA with w(A) = o*. We show 

Assume there exists a matrix A E fi* with A, < A,. Let A = H- ‘AH. The 

first n, columns in H coincide with the first unit victors el,. . . ,e”r of C”. This 
is due to the fact that the stabilizer group for the pair (A,(a), B,(a)) is trivial 

({I,,}). Let now 

t: = min{jE_n: cij* Czj}, 

and eri - hrl = (A - X)‘(e’ - h”) for i = O,...,p. 
Assumee’-h’@[e’:iE_n A i*t]c. Replacingh’i, i=O,...,p, in H= 

(h’,..., h" ) by (e’i - hQ ), we obtain a new matrix fin GL( n). This can be 
shown as follows: assume there exists a linear combination CT= r (Y~ p = 0 and 
not all cyi are zero. Linear independence of { ei: i E _n A i P (r,, . . . , r,}} implies 
that r, = max(r E {rO,..., rP): (Y, * 0} exists. But from hQ = (A - x)k(es - h”) 

= (l/avk)ci t rk aiR’ we conclude that (A-X)P(e”-h”)=(ef- hf)E[ei: i 
E_n A iE(q,..., rp}lc, contradicting our assumption. Finally, by construc- 
tion we have ~(2 - 8) 2 w(2), and multiplying et - h’ by a suitable con- 

stant /3, E Cc, we obtain H-‘L@ZE 6* with o((Z?~A@~) -C o*, contradicting 
(6.7). 
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If on the other hand et - hf E [ ei; i E _n A 
Define 

- (a’)cx 
cX:=mk3X{j:(6’)j*(dt)j}, 

y: = (ct), _ ((i’)a ’ 
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i * t ] c , we proceed as follows. 

Rt:=et+y(et-ht). 

Replacing e*l, i = O,...,p, by kl = (A - h)’ [es - y(e” - h”)], we obtain as 
before a new element fi of Gl(n). Because 5’ + y(dt - a”) < df and (A - X)I? 

E CL, we have fi-‘Afi~ o* with w((fi-‘A@,) -C o(A,) 2 w*. 

Finally, let P, be the (n - n,)X( n - n,) p&mutation matrix such that 
J,(A) = P ~ ‘KP: (see Section 4). Define 

(CA,cB) is similar to (A, B) and fulfills conditions (a) and (b) of the theorem. 
It remains to show condition (c), Assume there exists a pair (A, A) E S,, s) of 

the form (6.2) fulfilling (6.3) with A < “A. Then we have (A,) & J,(A): But 

A, and J,( A, are similar and J,( A3, isCthe normalized minimal eliment in S,- 
(see Theorem 4.2). Hence A, = J,(A), and we necessarily have A, -C ‘A,. But 

A, and ‘A, are of such a form [see (S.S)] that A, < ‘A, implies A,;, < “A,P 

= &. This contradicts (6.8). 
C C 

W 

Pairs (A, B) E Z,, m fulfilling the properties (6.2)-(6.4) are called u-canon- 
ical. The following corollary is an immediate consequence of the proof of 
Theorem 6.1. 

COROLLARY 6.2. A o-canonical pair (A, B) E 2,,, has the following 
properties: 

(a) A is of form 

(6.9) 



470 D. PR;iTZELWOLTERS 

(b) A,(&, fiij) is of the form 

(6.10) 

Here A,(& gj) denotes the n, x i$j submutrix of A, corresponding to the 

submatrixJ(Ai,aij)= P,.J(T+i~j)P, of.&(A). 

EXAMPLE 6.3. Let 

‘%=span,[b,Ab]=span, . 

There exists only one nice order c on 4 x I. H = [b Ab e4 e’] brings (A, B) 
into “partial” canonical form: 

H-‘AH= /--------- ’ --’ 4 3 
0 0 -2 3 
0 o-+0 

H-‘B = 

det A= (s + l)2. The set of admissible Jordan generators bringing 
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into Jordan canonical form is 

= {X E C4; xs * 3x4} 

Minimizing the nonzero entries in 

(A + 1,)‘~ = (x1 + x4, rr +2x4 - ~x,,O,O)* 

with respect to < , we obtain the condition x1 = $rs - 2x,. The first 

component in (A G Z4)2~ then is 4~s - x4. But this component cannot be 
canceled, because x E J. Let XG (X E C4: x1 = - x4 A *x, - x4 = l}; for 
example X= (1 0 3 0)r. We obtain the desired canonical form with the 
similarity transformation H = [b Ab (A + I,)? f]: 

EXAMPLE 6.4. Let 

0 0 -1 

0 -1 0 ; 
A= l----------- o o -1 1 

0 0 0 -1 

_ 

_ 

0 

--, 1 1 
0 

H-lB= 
0 

* 1 II 0 
-1 0 

LO 0 0 0 -1J LO 0 01 

A and B are canonical for the Kronecker order x and every value of (Y and p. 
This is an immediate consequence of the fact that for this example we have 
$ ={xEP:Xs *O}, det (sZ - A)A = (s + 1)2, and (ch A)r = 
(ax,, Pr,, r,,O,O)r. 

REMARK 6.5. The conditions (6.9) and (6.10) of Corollary 6.2 are not 
sufficient for a pair (A, B) to be canonical. Not every (*) in the first columns 
of the A2(Xi, tiij)-submatrices is a free parameter. The order ( < ) fixes zero 

entries below the leading l-coordinates of these columns. Hence &he invariants 
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associated to the ‘A, part of ‘A are given by a family of manic polynomials 

(f”) Y E Z('A,)> fGfn”_lSn’-l+ ... +f,‘EQ=[s], 

fky=ca2(&,%ij):+I, k=O ,..., n,--1. 

The polynomials f” depend on I,( AI%) or Spec(Al%). If for example 
Spec( Al%) n Spec( A, = 0, then we have f” = 0 for all v E Z(A), because the 
maps (A - &)nkjl: 6% -+ 9% are bijective. ‘A, = 0, i.e., there exists a direct-sum 
decomposition of the state space C n = ‘% CD ‘3, such that the system (A, B) is 
a direct sum of the reachable subsystem (Al: 3 -+ C%, B: C” + ‘3%) and a free 
system (Al:19 -+ S,O). In the general case the parameters of ‘A, depend on 
the relation between the prefixed nice basis and the Jordan basis of (Ck, A). 
An explicit characterization of the canonical pairs (“A, “B) solely in terms of 
the matrices itself is still missing. Some more detailed information about the 
number of free parameters in ‘As, a second canonical form (,A,,B) closely 
related to (“A,“B), and the state-space decomposition associated to this form 
(,A,,B) are contained in [ll]. 
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